The Invariant Subspace Problem for Non-Archimedean Banach Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Invariant Subspace Problem

Notes for my lectures in the PSU Analysis Seminar during the winter and spring terms 2013-14, with special emphasis on the 1972 results of Victor Lomonosov.

متن کامل

The Invariant Subspace Problem

The notion of an invariant subspace is fundamental to the subject of operator theory. Given a linear operator T on a Banach space X, a closed subspace M of X is said to be a non-trivial invariant subspace for T if T (M) ⊆M and M 6= {0}, X. This generalizes the idea of eigenspaces of n×n matrices. A famous unsolved problem, called the “invariant subspace problem,” asks whether every bounded line...

متن کامل

The Invariant Subspace Problem

Heeft elke begrensde lineaire operator, werkend op een Hilbert ruimte, een niet-triviale invariante deelruimte? Het antwoord is positief voor zowel eindig-dimensionale ruimtes als voor niet-separabele ruimtes. Het onopgeloste probleem voor het geval daar tussenin, dus voor separabele Hilbert ruimtes staat bekend als het invariante deelruimte probleem. Professor B.S. Yadav van de Indian Society ...

متن کامل

Sufficient Conditions for the Invariant Subspace Problem

In this note, we provide a few sufficient conditions for the invariant subspace problem. Introduction An important open problem in operator theory is the invariant subspace problem. Since the problem is solved for all finite dimensional complex vector spaces of dimension at least 2, H denotes a separable Hilbert space whose dimension is infinite. It is enough to think for a contraction T , that...

متن کامل

A new metric invariant for Banach spaces

We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 2008

ISSN: 0008-4395,1496-4287

DOI: 10.4153/cmb-2008-060-9